Academia
Thesis Topics

Thesis Topics at the IMPT

The topics listed below are currently available (German). If you are interested, please contact the person mentioned in the announcement using exclusively your student university email address.

  • Development and characterization of an infrared sensor

    Bachelor/ Master Thesis / Student Project Topic (6 months/ starting now)

    Infrared thermography is used in particular in the medical context, where it is used for the near-surface analysis of physiological states and processes, such as the functional activity of the cerebral cortex or for the diagnosis of diseases. Infrared sensor systems currently available on the market usually use integrated cooling systems and additional emitters.The infrared sensor to be developed here will be implemented as a pure detector using a particularly sensitive material. For this purpose, a process chain for structuring the material using etching methods is being developed. After electrical contacting and proof of functionality by spectrometer measurements, the final sensor is to be designed as an array. This will later enable its use as an imaging measurement method.

    Requirements are: Willingness to work in a clean room, knowledge in the field of microtechnology, optics and measurement technology.

    Send your meaningful application documents by mail (only from your student email address) to Rico Ottermann.

    Topic Announcement
    PDF, 40 KB
  • Optimization of an industrial production process for optical coatings

    Student Project Topic (6 months/ starting now)

    Optical coatings enable the targeted adaptation of optically active components for the manipulation of their optical behavior, i.e. the physical interaction of matter with light. For this targeted manipulation and thus definition of the technological specifications, different and variously combined materials are used, which are applied by means of microsystem-technical manufacturing processes. An essential component of this microsystem-technical production chain is photolithography, which serves as a structure-giving parameter. Within the scope of this study, the existing manufacturing concept is to be evaluated and optimized with regard to the technological specifications in industrial cooperation with Laseroptik Garbsen.

    Prerequisites are structured work ethic and pracitcal, goal oriented mindeset.

    Send your application documents by mail (only from your student email address) to Leonard Diekmann.

    Topic Announcement (German)
    PDF, 45 KB
  • Fabrication and characterization of a force sensor array

    Bachelor/Master Thesis/Student Project Topic (6 months/ starting now)

    Ultrasonic wire bonding has been used in the field of microelectronics for many decades, but the detailed mechanisms involved have not yet been fully explored. In order to expand the knowledge of the bonding process, research is being conducted at the Institute of Microproduction Technology on the fabrication of sensors in the form of an array consisting of piezoelectric material. The current array has a total of twelve individual sensors and is manufactured using the dice-and-fill method.

    Within the scope of this work, the number and density of the sensors in the array is to be increased, building on the previous concept. One challenge is the development of a contacting concept for the individual sensors. In addition, different filling materials are to be tested for their suitability. The sensors will then be calibrated and characterized.

    Prerequisites are:

    • independent, goal-oriented way of working
    • interested and ideally previous knowledge in the field of microsystems technology

    Send your application documents by mail (only from your student email address) to Matthias Arndt.

    Topic Announcement
    PDF, 46 KB
  • Development and characterization of a hermetic bond for the fabrication of miniaturized atomic gas cells

    Master Thesis (6 months/ starting now)

    An atomic gas cell is the core component in many different quantum sensors. These include atomic clocks or optically pumped magnetometers, among others. For these cells, the hermetic connection of two components is mandatory. This prevents gas exchange with the environment, as well as contamination inside the cell. As a result, the composition and pressure of the atmosphere inside the cell can be precisely controlled. The atomic gas cells will be fabricated using microtechnology manufacturing techniques by hermetically bonding a patterned silicon chip to a glass chip. The goal of this student project is to develop a reproducible hermetic bond between glass and silicon for the fabrication of such an atomic gas cell, and to characterize the hermeticity of this bond.

    Prerequisites are:

    • independent, structured, goal-oriented way of working
    • interested in microsystems technology


    Please send an informative application via mail (stud.uni-hannover.de) to Jannik Koch.

    Topic Announcement
    PDF, 45 KB
  • Herstellung und Kontaktierung eines hochtemperatur Messaufbaus in der Strangpressmatrize

    Bachelor/ Project/ Master Thesis (6 months/starting now)

    Hohe Betriebstemperaturen sind allgegenwärtig: Sie sind in Antriebseinheiten, in industriellen Produktionsprozessen, wie der Warmverformung und der maschinellen Bearbeitung zu finden. Um optimale Produktionsergebnisse zu erzielen, werden daher bei den meisten Produktionsprozessen Messungen der Werkzeugtemperatur durchgeführt. Auch beim Strangpressen ist eine präzise Temperaturerfassung notwendig um sowohl die Maßhaltigkeit der Endprodukte als auch deren mechanische Eigenschaften und Spezifikationen zu kontrollieren und sicher zu stellen. Ziel dieser Arbeit ist es, eine Prozesskette zur Herstellung eines Integrationskonzeptes für eine Temperaturmessung nahe der Umformzone beim Strangpressen zu entwickeln, die Hochtemperaturkontaktierung zu realisieren und das Einsatzverhalten, sowie die Anwendbarkeit zu evaluieren.


    Required Skills:

    Kenntnisse in Konstruktion, engagierte und kreative Arbeitsweise. Idealerweise besuchte Lehrveranstaltungen: Mikrotechniklabor


    Please send your application per e-mail (stud.uni-hannover.de) to Selina Raumel.

    Topic Announcement
    PDF, 43 KB
  • Evaluation und Optimierung eines PECVD-Prozesses zur Fertigung von Isolationsschichten aus Si3N4 und SiO2

    Bachelor/ Project/ Master Thesis (6 months/starting now)

    Das Forschungsprojekt KACTUS II verfolgt das Ziel, die Atomchiptechnologie in eine neue Generation zu überführen und diese um weitere Funktionen zu ergänzen. Hierbei ist die Auswahl geeigneter Materialien und Fertigungsprozesse entscheidend, sodass ein schnelleres Schaltverhalten sowie bessere Vakuumeigenschaften erzielt werden können. Die zunehmende Funktionalisierung und Erweiterung der Integrationsdichte ermöglicht die weitere Miniaturisierung der Atomchips sowie des Gesamtaufbaus, um den Technologieeinsatz in kommerziellen Anwendungen zu ermöglichen. Für die Erweiterung der Integrationsdichte sowie zur Erhöhung der Belastbarkeit der stromführenden Strukturen der Atomchips sind entsprechende Isolationsschichten unerlässlich. Daher ist im Rahmen dieser Arbeit ein PECVD Prozess zu untersuchen und anzupassen, um die Eigenschaften der Isolationsschichten gezielt einstellen zu können. Abschließend ist der Prozess in die Fertigungskette der Atomchips zu integrieren.


    Voraussetzungen:
    Selbständige, strukturierte, eigenverantwortliche Arbeitsweise; Interesse an Mikrosystemtechnik; Spaß an praktischer Tätigkeit, Bereitschaft zur Reinraumtätigkeit


    Senden Sie Ihre aussagekräftigen Bewerbungsunterlagen per Mail (stud.uni-hannover.de) an Christoph Künzler.

    Topic Announcement
    PDF, 46 KB
  • Zusammenfassung des aktuellen Forschungsstandes im Bereich der Atomchiptechnologie (Literaturrecherche)

    Bachelor Thesis, Project Topic (6 months/starting now)

    Das Forschungsprojekt KACTUS II verfolgt das Ziel, die Atomchiptechnologie in eine neue Generation zu überführen und diese um weitere Funktionen zu ergänzen. Hierbei ist die Auswahl geeigneter Materialien und Fertigungsprozesse entscheidend, sodass ein schnelleres Schaltverhalten sowie bessere Vakuumeigenschaften erzielt werden können. Die zunehmende Funktionalisierung und Erweiterung der Integrationsdichte ermöglicht die weitere Miniaturisierung der Atomchips sowie des Gesamtaufbaus, um den Technologieeinsatz in kommerziellen Anwendungen zu ermöglichen.
    Mit dieser Arbeit soll der aktuelle Forschungsstand im Bereich der Atomchiptechnologie abgebildet und neue Entwicklungen aufgezeigt werden. Dabei sind sowohl die Miniaturisierungen der peripheren Aufbauten als auch die Fertigungstechnologien für Atomchips zu betrachten. Dies erfolgt auf Grundlage einer entsprechenden Literaturrecherche.


    Voraussetzungen:
    Selbständige, strukturierte, eigenverantwortliche Arbeitsweise; Sehr gute Englischkenntnisse; Spaß daran, sich wissenschaftlichen Fragestellungen theoretisch zu nähern


    Senden Sie Ihre aussagekräftigen Bewerbungsunterlagen per Mail (stud.uni-hannover.de) an Christoph Künzler.

    Topic Announcement
    PDF, 45 KB

RESEARCH TOPICS AND UNSOLICITED APPLICATIONS

We mainly offer topics from the two areas of thin film technology and mechanical micromachining and tribology. These areas are described in more detail below. If you have any questions regarding the topics, please direct them to the contacts listed. Do you have an idea or are you interested in a specific topic and would like to write a paper on it? We are always open to working on topics with students and are happy to receive unsolicited applications!

THIN FILM TECHNOLOGY

The field of thin-film technology at IMPT covers the design and manufacture of microsystems/MEMS (sensors, actuators). The underlying effect of most of these systems is electromagnetism.

  • Design

    The initial system design is done by analytical and network-based methods. The detailed design is then carried out using FEM simulations. For this purpose, the multiphysics simulation tool ANSYS® is available, with which simulations e.g. in the fields of structural mechanics and electromagnetics as well as thermal and fluid dynamic simulations can be performed.

  • Actuators

    The actuators manufactured at the IMPT use magnetic fields to generate movement. Depending on their operating principle, the actuators can be classified as synchronous, (variable) reluctance, and hybrid actuators. Both linear and rotating micromotors are manufactured, and the use of these magnetic microactuators is being investigated, e.g. in microoptics, the manipulation of magnetic nanoparticles and implantology.

  • Sensors

    In addition to sensors based on electromagnetic principles, such as eddy current sensors, strain sensors, and GMR sensors (ultra-thin, for high-temperature applications), research at the IMPT focuses on modular sensors for gentelligent applications, including temperature sensors.

  • Manufacture

    For the production of microactuators and sensors a combination of photolithography and electrodeposition is routinely used. Using photolithography, a temporary form of photoresist is created on Si or Al2O3 substrates and filled with functional materials by electrodeposition. As functional materials Cu is used for coils and leads. NiFe45/55, NiFe81/19, CoFe and Ni are used for flow guides. Furthermore, the epoxy resin SU-8™ and polyimide are used as embedding material and material for membranes. As insulation layers of Si3N4 and SiO2 are used, which are produced by PECVD (Plasma Enhanced Chemical Vapor Deposition). For patterning, ion beam etching and lift-off are also used. The production of mechanical components (membranes, bending beams, spring structures...) is done by a combination of photolithography and etching processes. For this purpose dry etching processes (e.g. DRIE, plasma) as well as wet chemical etching processes (e.g. KOH, HF) are available.

Topics in this field may have the following main focuses:

  • The fabrication and characterization of microsystems
  • The development and optimization of manufacturing processes
  • Layer characterizations
  • Materials testing
© IMPT / Fischer
Alexander Kassner, M. Sc.
Management
Address
An der Universität 2
30823 Garbsen
Building
Room
107
© IMPT / Fischer
Alexander Kassner, M. Sc.
Management
Address
An der Universität 2
30823 Garbsen
Building
Room
107

MECHANICAL MICROMACHINING AND TRIBOLOGY

  • Mechanical Micromachining

    In the field of mechanical micro-machining, different processes are used. On the one hand, cutting-off and profile grinding processes are carried out for high-precision separation and profiling of micro-components made of ceramics, glass and silicon. On the other hand, nano-grinding and lapping processes are carried out for high-precision surface treatment of brittle-hard materials and the creation of micrographs. Furthermore, processes for the production of surfaces of high quality as well as the planarization of wafer surfaces of material combinations by polishing and chemical-mechanical polishing (CMP) are performed.

  • Microtribology

    In the field of microtribology, for example, wear investigations are carried out on a rotary wear measuring stand using the pin-on-disk method for flat microcontact. Furthermore, investigations on microhardness and Young's modulus as well as the representation of (adhesive) friction of thin layers by means of nanoindentation and scratch investigations are carried out. The breaking strength of coatings is determined by means of acoustic emission. Additionally, analyses of friction forces in microcontact are carried out.

Topics in this field may have the following main focus:

  • Generation of highly accurate edges and microprofiles
  • Optimization of a wafer holder tool for chemical mechanical polishing (CMP)
  • Joining of micro components by means of soldering, eutectic and anodic bonding
  • Investigation and characterization of tribological coatings